Cnoidal waves for the quintic Klein-Gordon and Schrödinger equations: Existence and orbital instability

نویسندگان

چکیده

In the present paper, we establish existence and orbital instability results of cnoidal periodic waves for quintic Klein-Gordon nonlinear Schrödinger equations. The spectral analysis corresponding linearized operator is established by using Floquet theory. determined applying an abstract result due to Shatah Strauss.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Instability of Standing Waves for Nonlinear Klein-gordon Equations

The strong instability of ground state standing wave solutions eφω(x) for nonlinear Klein-Gordon equations has been known only for the case ω = 0. In this paper we prove the strong instability for small frequency ω.

متن کامل

Strong instability of solitary waves for nonlinear Klein-Gordon equations and generalized Boussinesq equations

We study here instability problems of standing waves for the nonlinear Klein-Gordon equations and solitary waves for the generalized Boussinesq equations. It is shown that those special wave solutions may be strongly unstable by blowup in finite time, depending on the range of the wave’s frequency or the wave’s speed of propagation and on the nonlinearity.

متن کامل

Strong instability of standing waves for nonlinear Klein-Gordon equation and Klein-Gordon-Zakharov system

The orbital instability of ground state standing waves eφω(x) for the nonlinear Klein-Gordon equation has been known in the domain of all frequencies ω for the supercritical case and for frequencies strictly less than a critical frequency ωc in the subcritical case. We prove the strong instability of ground state standing waves for the entire domain above. For the case when the frequency is equ...

متن کامل

Generalized solitary wave solutions for the Klein-Gordon-Schrödinger equations

Some new generalized solitary solutions of the Klein–Gordon–Schrödinger equations are obtained using the Exp-function method, which include some known solutions obtained by the F-expansion method and the homogeneous balance method in the open literature as special cases. It is shown that the Exp-function method is a straight, concise, reliable and promising mathematical tool for solving nonline...

متن کامل

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2022

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2022.126203